Using RDF in a linguistics archive

Jeff Good, MPI EVA (good@eva.mpg.de)
RDF Introduction

- What is RDF?
 - Gory detail: It’s a W3C specification and one of the core technologies of the Semantic web
 - At heart it’s a data model not a format
 - The model takes the form of triples which join together to form a graph
 - There are some additional restrictions to make things web-friendly
RDF Triples

Subject \rightarrow Predicate \rightarrow Object

Resource \rightarrow Metadata Field \rightarrow Metadata Content
RDF Triples

• There shouldn’t be anything conceptually new to triples

• Most metadata schemes are already based on conceptual models which use triples or something like them

• What’s important about RDF is it explicitly uses triples as its model—as opposed to, say, vanilla Dublin Core which does not
RDF Triples

- Obviously, one triple on its own isn’t very interesting
- But, triples can become a fairly powerful way to encode information when combined together
An RDF Graph

Recording #2234

Bundle #23

George Ngong

Jeff Good

mff

Naki

A Naki Recording

dc:title

dc:creator

dc:subject

dc:title

aila:isPartOf

dc:creator
A key ingredient of RDF is restrictions relating to unique identifiers.

Any node in the graph serving as the subject of a predicate must have a unique identifier.

Nodes only serving as objects can be text strings.

Unique identifiers must take the form of a URI (i.e., look like a web address).
These nodes must be associated with unique identifiers
RDF Identifiers

• Why URI’s
 • They are familiar and web-friendly
 • They are convenient for an “open” universal ID system—that is, unlike a traditional database ID, the idea is that a URI ID will be made publicly known
 • This will allow others to say things about your resources in a machine-readable way without coordination
RDF URI’s

http://www.language-archives.org/OLAC/1.0/LanguageCodes.xsd#x-sil-mff

http://rosettaproject.org/archive/Naki-Bundle-22

http://rosettaproject.org/archive/Naki-Recording-2234

RDF URI's

Bundle #23

Recording #2234

mff

dc:title

Naki

dc:subject

A Naki Recording

dc:creator

Jeff Good

dc:creator

George Ngong

http://www.language-archives.org/OLAC/1.0/LanguageCodes.xsd#x-sil-mff
RDF Identifiers

- An envisioned scenario
- An archive publishes its RDF metadata
- A linguist using a resource from that archive uses the URI’s in the resource metadata to add new information to the original resource metadata
- Another linguist “merges” the two sets of data into one big informative RDF graph
Merging Two Graphs

Recording #2234

- George Ngong
- Jeff Good

A Naki Recording

- mff
- Naki

Eastern Beboid

- lingual:isDaughterOf
- dc:title

ailla:isPartOf

dc:creator

dc:subject

dc:title
Rosetta Background

• Rosetta did not start to use RDF because of metadata management problems

• It used it to encode genetic and geographic relationships among language

• These sorts of relationships, involving “trees”, are much more easily formalized using graphs than relational tables

• Therefore, RDF was a better solution than a relational database
Rosetta Background

• But, we knew that RDF was good practice and that there was an RDF Dublin Core specification

• So, given that we were developing RDF tools anyway, it made sense to use RDF for our metadata as well
Technical Details

• As a W3C standard, there are well-defined specifications for encoding RDF

• An important one of these is RDF/XML, an XML way of representing RDF

• But there are others, as well, including the relatively compact N3 format

• At Rosetta, we use a Python library for RDF processing. There are also Java and Perl libraries (and maybe others)
RDF Pluses

• A good RDF library abstracts away from things like XML formatting details

• All you have to think about is your triples and their URI’s—the tools take care of creating the archival output

• Having used RDF tools, I never want to go back to XML again

• Why think in terms of a format, when you can think in terms of a data structure?
RDF Pluses

- You get for free
- Interoperability with others using your namespaces and URI schemes
- The possibility to integrate with ontologies
- A best-practice data model which can be expressed in an archival format
- Interoperability with yourself
A Rosetta Application

- At Rosetta, our website runs off of a database optimized for web applications.
- We want our resource metadata to be stored in that database.
- However, our primary resources at present, scanned images, are not stored in a database but rather in the filesystem of our image server.
A Rosetta Application

• We have a quandary: We want our metadata in two places

• Old method: The database was the only place where the metadata was and you would query it to get information about a file in the filesystem
A Rosetta Application

• New method

• We store RDF metadata in a small text file in the same directory as the resource itself

• We have a script that looks for those metadata files, merges them into one big RDF graph, and outputs a new XML file containing all the metadata

• This file is then fed into our database
A Rosetta Application

• Our website database could implode, but we’d still have our metadata on the filesystem

• This whole process is simple because RDF was designed with this kind of “merger” in mind

• “XML” is not designed with this in mind
An N3 metadata snippet

<http://rosettaproject.org/archive/aaa/vertxt-1> a lingbib:ScannedDocument ;
dc:title "Ghotuo Glossed Text" ;
dc:creator "Author to be added" ;
dc:date "Date to be added" ;
lingbib:refersToLanguoid <http://rosettaproject.org/archive/aaa> ;
lingbib:rosettaType "vertxt" ;
lingbib:hasPages "5" ;
lingbib:imageNamePrefix "aaa-vertxt-1" ;
lingbib:hasStatus "live" ;
lingbib:directory "rosettaproject/archive/a/a/aaa/vertxt-1/" .
An XML metadata snippet

```xml
<?xml version="1.0" encoding="utf-8"?>
<rdf:RDF
  xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'
  xmlns:lingbib='http://rosettaproject.org/ns/lingbib/1.0/'
  xmlns:dc='http://purl.org/dc/elements/1.1/'
>
  <lingbib:ScannedDocument rdf:about="http://rosettaproject.org/archive/aaa/vertxt-1">
    <lingbib:imageNamePrefix>aaa-vertxt-1</lingbib:imageNamePrefix>
    <dc:title>Ghotuo Glossed Text</dc:title>
    <dc:creator>Author to be added</dc:creator>
    <lingbib:refersToLanguoid rdf:resource="http://rosettaproject.org/archive/aaa"/>
    <lingbib:rosettaType>vertxt</lingbib:rosettaType>
    <dc:date>Date to be added</dc:date>
    <lingbib:directory>rosettaproject/archive/a/a/aaa/vertxt-1</lingbib:directory>
    <lingbib:hasPages>5</lingbib:hasPages>
    <lingbib:hasStatus>live</lingbib:hasStatus>
  </lingbib:ScannedDocument>
</rdf:RDF>
```
from rdflib.Graph import Graph
from rdflib.Namespace import Namespace

store = Graph()

import os.path
for root, dirs, files in os.walk('rosettaproject/archive'):
 for file in files:
 if file == "MyMetadata.n3":
 store.load(root+"/"+file, format="n3")

resourceMDfile = open("resources.rdf", "w")
resourceMDfile.write(store.serialize())
RDF considerations

- It’s still a pretty new technology. So, support is limited.
- Rosetta has a custom-built system for working with its data.
- That being said, I found it to be pretty easy to learn to use the basic tools.
- ...much easier than XML